

ТЕХНОЛОГИИ НА СЛУЖБЕ ВАШЕГО БИЗНЕСА

ПЕЧАТЬ И СКАНИРОВАНИЕ

Как использовать 3D-печать и 3D-сканирование для развития бизнеса: экономика, специфика, новые возможности

OKT9591

СОДЕРЖАНИЕ

BE	ВЕДЕ	НИЕ	4
1.		ГУАЛЬНОСТЬ, ИСТОРИЯ ПОЯВЛЕНИЯ И ИМЕРЦИАЛИЗАЦИЯ 3D-ПЕЧАТИ	9
	1.1.	Основные определения	10
		Актуальность и коммерциализация 3D-печати	
	1.3.	История развития 3D-печати	19
2.	КЛН	ОЧЕВЫЕ ТЕХНОЛОГИИ И МЕТОДЫ 3D-ПЕЧАТИ	. 29
	2.1.	Варианты применения наиболее часто используемых технологий 3D-печати в различных отраслях13	30
	2.2.	Основные этапы процесса 3D-печати	. 38
3.	ОБ1	БЕМ РЫНКА 3D-ПЕЧАТИ	41
-			
4.	TEH	ДЕНЦИИ РЫНКА И ПРИМЕРЫ ПРИМЕНЕНИЯ 3D-ПЕЧАТИ	48
	4.1.	Удешевление использования существующих технологий	. 49
	4.2.	Расширение областей использования 3D-принтеров и рост влияния технологии в создании продукта	52
	4.3.	Рост интереса производителей цифровой техники и крупных промышленных компаний к развитию собственных продуктов в 3D-печати	. 58
	4.4.	Рост инвестиций глобальных опрошенных производителей 2015-2017 г	. 60
	4.5	Рост числа сервисов по 3D-печати, формирование инфраструктуры, где ценно обладание моделью, а не владение физическим предметом	61
	4.6.	Усиление Влияния 3D-печати на авторское право	
5.	ПОІ	РТРЕТЫ КЛЮЧЕВЫХ ИГРОКОВ, ОКАЗЫВАЮЩИХ СЕГОДНЯ	60
		ИБОЛЬШЕЕ ВЛИЯНИЕ НА ОТРАСЛЬ	
	5 1	Ключевые игроки рынка	69

	5.2.	Роль влияния краудфандинговых площадок в финансировании проекто по разработке 3D-принтеров. Анализ наиболее успешных стартап проектов	
	5.3.	Российские производители 3D-принтеров	
	5.4.	Сервисы 3D-печати и поставщики оборудования	105
6.		МЕНЕНИЕ ТЕХНОЛОГИИ 3D-ПЕЧАТИ И СКАНИРОВАНИЯ АЗЛИЧНЫХ ОТРАСЛЯХ ЭКОНОМИКИ	126
	6.1.	Применение 3D-печати в производстве и промышленном дизайне: для создания прототипов и макетов будущих продуктов и изделий	129
	6.2.	Применение 3D-печати в производстве для создание мастер-моделей (литейных моделей) для пресс-форм, используемых для литья пластиков и металлов	139
	6.3.	Мелкосерийное производство деталей и оснастки	144
	6.4.	Производство оснастки, крепежа и инструментов необходимых для сборочных процессов	149
	6.5.	Применение 3D-печати в медицине	150
7.	3D-	СКАНИРОВАНИЕ	159
	7.1.	Примеры применения 3D-санир <mark>ования</mark>	163
	7.2.	Объём рынка 3D-сканирования	167
	7.3.	Применение 3D-сканирования	170
	7.4.	Портреты производителей профессионального оборудования	178
8.	ПРΙ	МЕРЫ СОЗДАНИЯ БИЗНЕСА	. 203
HA	A KO	МПЕТЕНЦИЯХ В 3D-ПЕЧАТИ	. 203
И	сточ		219

ВВЕДЕНИЕ

рорывные технологии за последние 10-15 лет сильно изменили нашу жизнь. Интернет, Wi-Fi, цифровой контент и смартфоны полностью трансформировали способы получения информации, характер коммуникации и скорость принятия решений в жизни и бизнесе.

Производство — Логистика — Продажи: что изменит эту цепочку в следующие 10 лет? Это интернет-P2P платформы (Uber, Airbnb, LendingClub), компактные системы хранения и генерации энергии, электромобили, виртуальная и дополненная реальность, роботехника, и, наконец, 3D-печать. Насколько сильны будут эти изменения? Радикальны. Так же, как в свое время цифровые технологии повлияли на компании Kodak и Polaroid, а революция в персональных компьютерах привела к банкротству DEC и других компаний.

Рынок 3D-печати (оборудование и сервис в 2015 г.) составляет \$5,35 млрд, среднегодовая динамика (CAGR 2008-2015) — 24%. Именно этот сегмент уже оказывает влияние на процессы создания прототипов, мелкосерийное производство и промышленный дизайн, позволяя снизить скорость разработки новых изделий, уменьшить производственную себестоимость и получить готовое изделие по индивидуальным и специфичным запросам. Кроме этого, своевременное изучение возможностей и внедрение 3D-печати в действующие процессы:

- позволит обеспечить кратный рост в скорости разработки и производстве новых продуктов,
- снизит себестоимость производства мелкосерийной продукции,
- позволит создать уникальные ка<mark>ст</mark>омизированные продукты и даст возможность вовлечь потребителей в процессы создания и тестирования новых разработок.
- ! 3D-производство постепенно смещает потребительскую ценность: ценным становится владение не готовым продуктом, а информационной моделью и возможностью напечатать ее несколькими видами материалов. Каждый день 2015 г. по всему миру продавалось 595 персональных принтеров и 37 профессиональных принтеров.
- ! С 2010 г. цена готового принтера снизилась с \$20 тыс. до \$2 тыс.
- ! Рынок США лидирует по числу отгрузок профессиональных 3D-принтеров.
- ! Компания Adidas в 2015 г. анонсировала сервис Futurecraft 3D: покупатель в отдельных магазинах фирменной сети может заказать изготовление пары кроссовок по индивидуальным параметрам (в магазине сканируется стопа клиента, через несколько недель покупатель получает по почте модель кроссовок со стелькой и подошвой, изготовленной на 3D-принтере с учетом индивидуальных размеров)¹.
- ! Компания Kutrieb Research использует в работе промышленный принтер 3D Systems для создания рабочих моделей и прототипов турбин. Создание прототипа турбины из воска занимало до 5 недель и стоило \$20 тыс., с помощью принтера 3D Systems модель создается за 1 ночь и \$2 тыс.²

В период быстрого развития новых технологий важно понять, на что уже способны прорывные направления, кто стал пионером в применении и уже получил значимый экономический эффект. В данном исследовании мы рассмотрим и проанализируем действующие практики применения 3D-технологий, познакомим с компаниями, которые создают специализированные решения, расскажем об отраслях, где внедрение 3D-печати сможет оказать наибольшее влияние в ближайшие 7-9 лет.

Ключевые вопросы информационно-аналитического исследования:

Как выглядит рынок 3D-печати и 3D-сканирования, какие игроки играют в нем ключевую роль сегодня?

Какие технологические процессы в производстве и разработке может изменить 3D-печать, влияя на экономику и скорость выпуска продукта?

В каких случаях использовать 3D-печать экономически целесообразнее вместо размещенного или собственного производства?

Будут ли 3D-принтеры в каждом доме и зачем они нужны для бытового применения?

Как построить бизнес на компетенциях в 3D-печати и 3D-сканировании?

Сколько в РФ производителей 3D-принтеров? Как найти и выбрать производителей 3D-принтеров?

Какие отрасли уже применяют 3D-печать, как эта технология повлияла на экономику продукта и качество сервиса?

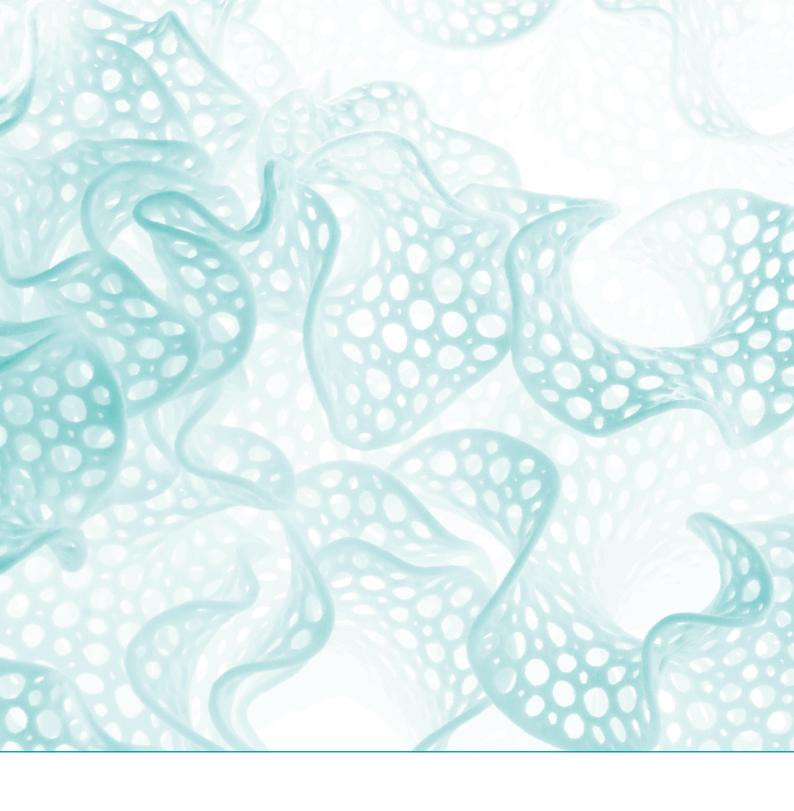
Данное исследование адресовано всем тем, кто изучает возможно<mark>сти 3D-печати и х</mark>очет быть осведомлен больше об этой отрасли, а также:

1. Производственным и сервисным компаниям, стремящимся:

- а) увидеть новые возможности в применении технологий 3D-печати в собственных отраслях (промышленном производстве, розничной торговле, медицинских услугах, рынке ювелирных изделий, товары для дома и офиса),
- b) понять влияние новой технологии на универсальные рынки, касающиеся всех компаний (рынки логистики, IT, коммуникаций, недвижимости и т.д.).
- 3. **Инвесторам и стартап-командам**, оценивающим новый растущий рынок 3D-печати и 3D-сканирования для создания в этом сегменте нового ценностного рыночного предложения.

Новый раздел, посвященный 3D-сканированию:

В различных областях деятельности человека завоевывает свое место не только технология 3D-печати, но и 3D-сканирование. С помощью этой технологии можно выполнять сканирование различных физических предметов, получая их трехмерные цифровые модели, характеризующиеся высокой точностью. Полученные модели с электронными данными о форме конкретного предмета могут быть задействованы в строительной сфере, медицине и игровой индустрии. На то, что ранее требовалось часы или даже дни, в настоящий момент посредством 3D-сканера необходимы лишь считанные секунды.


Технология 3D-сканирования достаточно проста: сканер создает карту из крайних точек поверхности объекта и затем реконструирует их, что позволяет создать цифровой образ сканируемого объекта той же формы и цвета.

3D-печать увеличила ценность 3D-сканирования, позволив воссоздать отсканированные модели. Уже сегодня развитие технологий привело к возможности создавать, обрабатывать и воссоздавать 3D-модели.

В 2017 году команда ГК Института Тренинга АРБ-Про провела анализ применения технологии 3D-сканирования для различных отраслей:

- **Инженерный анализ**: получение точной компьютерной модели предметов, которые требуется воссоздать (реверс-инжиниринг).
- **Контроль качества и инспекция:** проверка соответствия создаваемой продукции установленным требованиям и техническим нормам, включая микротрещины, оценка прочности, соответствие размерам.
- Цифровое архивирование: создание цифрового архива прототипов изделий.
- **Промышленный дизайн:** создание трехмерного макета, на основе которого можно будет получить серийное изделие, изготовление дизайнерской упаковки, а также возможность получения и исследования формы объекта с ее последующей доработкой.
- **Развлечения и игры:** получение анимационных моделей для игр и фильмов, возможность создания цифрового мультимедиа контента, основанного непосредственно из концептуальной модели разработчиков. Это актуально прежде всего, для видеоигр и разработки игровых персонажей, навеянных творческой фантазией.
- **Медицина и ортопедия:** возможность создания трехмерных моделей суставов, строений кости и отдельных органов человеческого тела, планирование операционных манипуляций, проектирование разнообразной анатомической обуви и ортопедических конструкций.
- **Архитектура:** 3D сканеры могут применяться для сканирования на заказ различных архитектурных деталей и элементов, например, колонн, статуй и декораций.

- **Строительная промышленность:** получение чертежей мостов и сооружений в трехмерном исполнении, реконструкция автомобильных трасс и магистралей.
- **Музейное дело и сохранение культурного наследия:** точное восстановление формы устаревших скульптур или памятников для их последующей реконструкции, возможность организации виртуальных музейных экскурсий, сканирование старинных, антикварных предметов.
- **Киноиндустрия:** получение цветной трехмерной модели человека для использования в компьютерной графике.

1. АКТУАЛЬНОСТЬ, ИСТОРИЯ ПОЯВЛЕНИЯ И КОММЕРЦИАЛИЗАЦИЯ 3D-ПЕЧАТИ

1.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

3D-принтер – устройство, использующее метод послойного создания физической модели в трех измерениях по цифровой 3D-модели.

Вместе с термином **«3D-печать»** часто используется термины **«аддитивные технологии»** или **«аддитивное производство»** (AF – Additive Fabrication, AM – Additive Manufacturing) как синонимы технологии **послойного синтеза**. Это последовательное наращивание слоев материала, используемого для быстрого прототипирования и производства (Rapid Prototyping and Manufacturing, RP&M)³.

В научной и профессиональной литературе часто используют понятие **«машина послойного синтеза»**, что фактически обозначает 3D-принтер.

Ключевые отличия 3D-печати от других методов формообразования (резки, фрезеровки, шлифовки и др. процессов):

- Изделие создается не деструкцией материала режущим клином, а аддитивным методом послойным наращиванием изделия при точном воспроизведении формы^{4,5}.
- Модель «строится» из сырья без применения дополнительного инструментария (например, заготовок или форм для литья) и часто без соединения готовых деталей (склеивание, сварка).
- Управление процессом происходит с помощью программных и аппаратных средств для получения координат построения 3D-модели⁶.

По применению 3D-принтеры можно условно разделить на:

- 1. **Персональные** настольные 3D-принтеры небольших размеров с ценой ниже \$3000, применяемые для печати пластиками (ABS, PLA и др.). Такие принтеры могут применяться малыми и средними компаниями (например, архитектурно-дизайнерскими бюро, производителями сувенирной продукции, рекламно-производственными компаниями) или частными лицами для бытового применения.
- 2. **Профессиональные** производственные 3D-принтеры. Цена от \$5 тыс. Расходные материалы: пластики, воск, фотополимеры, металлы, гипсовый порошок и т.д. Предназначены для компаний с потребностью в производстве высокоточных, высококачественных моделей с высокими показателями точности и качества поверхности. Производственные 3D-принтеры позволяют изготавливать макеты, прототипы изделий и узлов и тиражировать изделия небольшими партиями. Варианты применения: создание моделей для функциональных, эргономических и комплексных испытаний, изготовление моделей для литья, использование в зубном протезировании и ювелирном производстве

1980-e

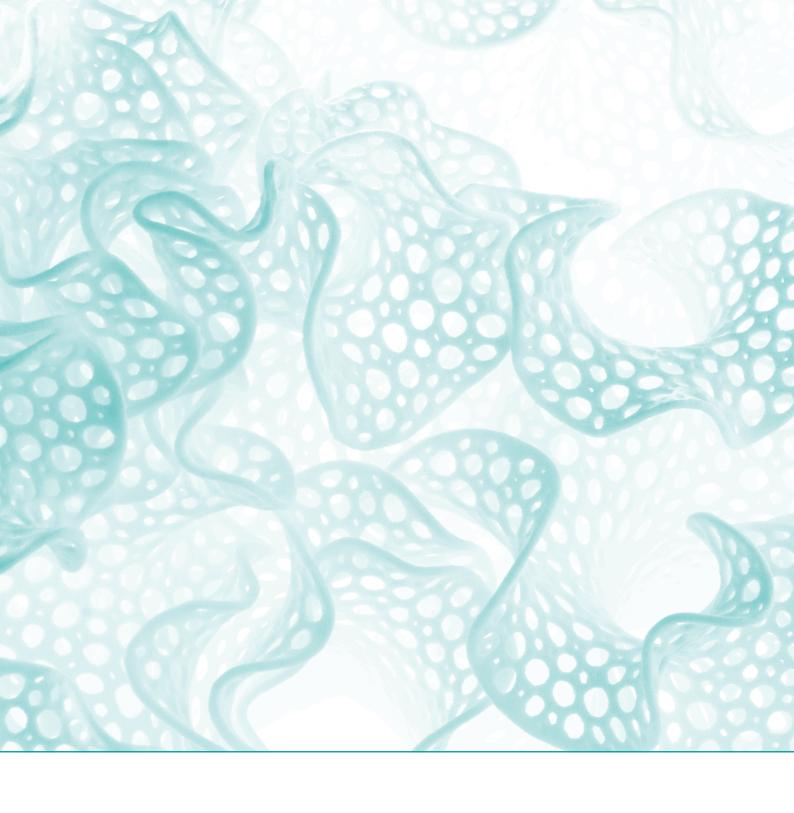
- Меньшее количество этапов производства для проектирования, изготовления прототипов и изготовления сложных и кастомизированных продуктов.
- Возможность быстрой доставки товаров благодаря использованию сервисов 3D-печати по запросу.
- Снижение затрат на логистику и производство (снижение затрат на транспортировку и хранение, возможное устранение импортных/экспортных затрат за счет локального производства, устранение ряда производственных инструментов и пресс-форм предприятиях).
- Более высокая эффективность производства за счет использования наименьшего количества материала и энергии в производстве.

1.3. ИСТОРИЯ РАЗВИТИЯ 3D-ПЕЧАТИ

Термин 3D-печать впервые был употреблен в 1995 г., авторы — ученые Массачусетского Технологического Института (МІТ), им принадлежит изобретение метода печати склеиваемым порошком, однако впервые технология была разработана раньше.

1983 г.

Чарльз Халл разработал технологию стереолитографии (SLA) для печати объектов по данным цифровых моделей из фотополимеризующихся композитных материалов. Название данной технологии происходит от слова «литография», что в переводе с древнегреческих слов означает: «λίθος» – «камень» и «γράφω» – «пишу»¹¹. Технология позволяла создавать 3D-модель для функционального тестирования до этапа промышленного запуска¹².



1985 г.

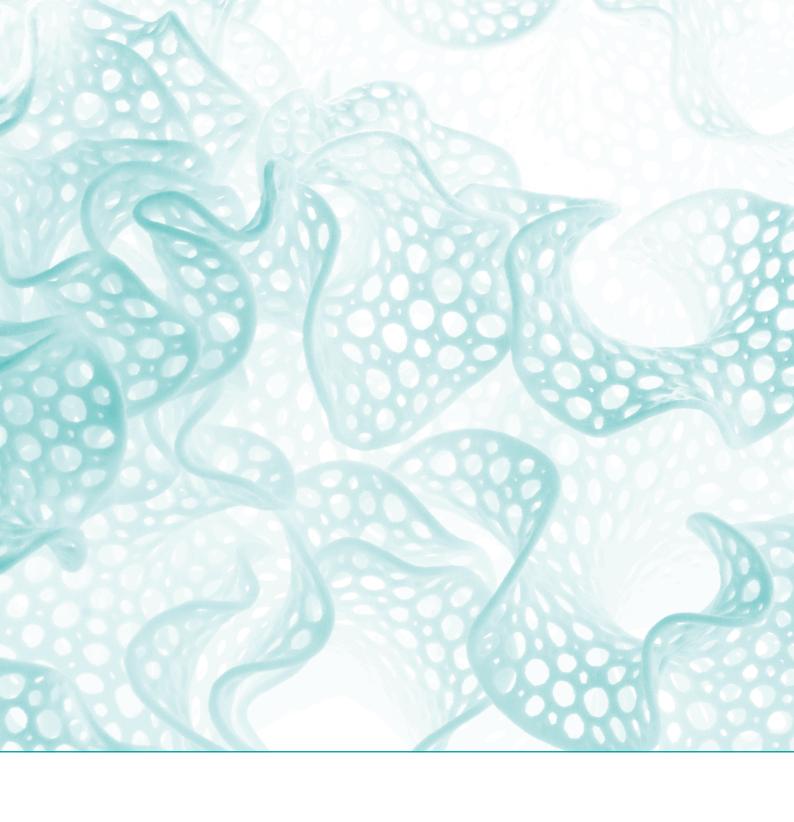
Майкл Фейген изобрел метод послойного формирования объемных моделей из листового материала. Технология получила название «производство объектов ламинированием» (LOM – Laminated Object Manufacturing)¹³. Тогда же Фейген основал собственную компанию **Helisys Inc**, занявшись выпуском 3D-принтеров по технологии LOM. В 2000 г. из-за финансовых трудностей компания прекратила работу, а на основе разработанных ею технологий была создана **Cubic Technologies**, в которой Майкл получил позицию президента.

9-086

2. КЛЮЧЕВЫЕ ТЕХНОЛОГИИ И МЕТОДЫ 3D-ПЕЧАТИ

2.1. ВАРИАНТЫ ПРИМЕНЕНИЯ НАИБОЛЕЕ ЧАСТО ИСПОЛЬЗУЕМЫХ ТЕХНОЛОГИЙ 3D-ПЕЧАТИ В **РАЗЛИЧНЫХ ОТРАСЛЯХ**¹³

Метод печати	Толщина мин. слоя, мм	Ср цена проф. решения	Цена печати, руб/см³	Производственные компании
Послойное наплав- ление (FDM)				
Стерео-литография (SLA)				3
Выборочное лазер- ное спекание (SLS)				
Метод многоструй- ного моделирования (MJP∖ PolyJET)				
Цветная струйная печать CJP		·		
Прямое спекание металла DMLS				6



Важно: ...

Примеры вариантов использования 14,15

примеры вариан	тов использования			
Медицина	Ювелирное производство	Архитектура и пром. дизайн	Реклама и развлечениz	Потребительские товары (бытовое, домашнее применение)
		1		2
4		5		

Технологии трехмерной печати ...

3. ОБЪЕМ РЫНКА 3D-ПЕЧАТИ

рынок 3D-печати, как и другие технологии шестого технологического уклада с высоким темпом межотраслевого внедрения, вступает в фазу устойчивого становления и развития. Это переход из статуса высокотехнологичной инновации в статус необходимого инструмента, способного производить сложные и качественные изделия с меньшим расходом материалов, электроэнергии и времени.

Про прогнозам исследовательской компании Smithers Pira рынок 3D печати в 2017 г. составил \$6,05 млрд.

Объем мирового рынка оборудования и расходных материалов (мир), \$млрд

	2008	2009	2010	2011	2012	2013	2014	2015	2020	CAGR 2008- 2015	CAGR 2015- 2020
Продажи оборудова- ния и <mark>матер</mark> иалов											
1. Продажи 3D-принтеров:											
1.1. Промышленные											
1.2. Персональные	 										
2. Расходные мате- риалы											

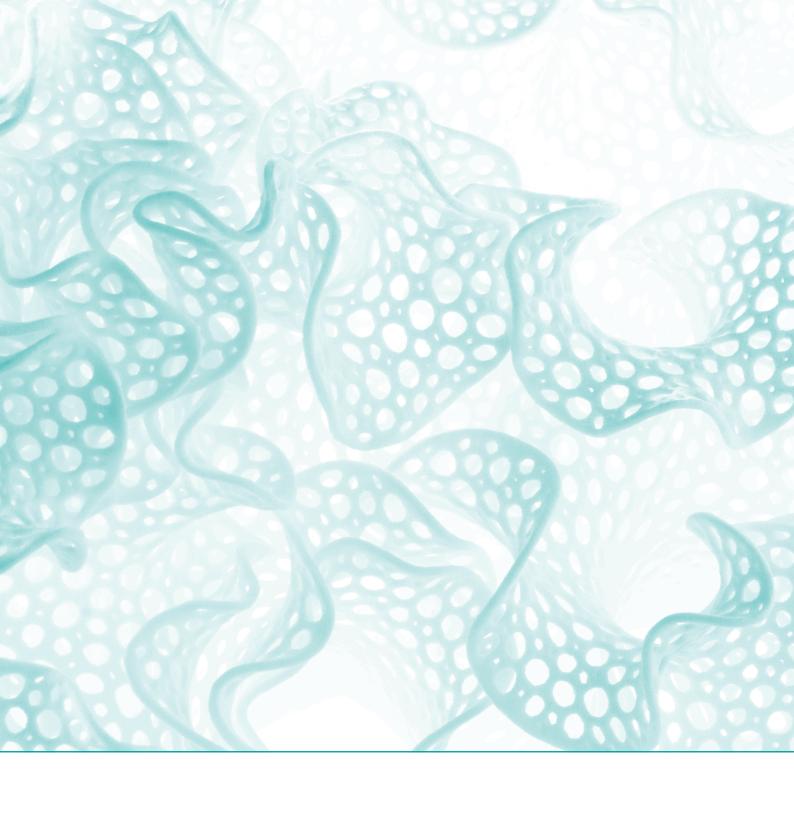
Источники: Wohlers, Gartner, Canalys, MIT, оценка ГК «Институт Тренинга – АРБ Про»

- ! Дизайнеры Bentley прорабатывают практически каждую деталь автомобиля от кузова до салона в заданном масштабе с помощью 3D-принтера.
- ! C 2013 г. формируются социальные сети, объединяющие клиентов и владельцев 3D-принтеров.
- ! Компания Kutrieb Research использует в своей работе промышленный принтер 3D Systems для создания рабочих моделей и прототипов турбин. Создание прототипа турбины из воска занимало до 5 недель и стоило \$20 тыс., с помощью принтера 3D Systems модель создается за 1 ночь и \$2 тыс.²⁰

По итогам 2016 г	

Рост сегмента ...

по итогам 2014 г. стали компании **Makerbot** (36% рынка), **3D-Systems** (16%), **Flash Forege** (16%), **Ultimaker** (5%). К 2020 г. потребительский сегмент продолжит рост за счет появления 3D-принтеров по цене ниже \$500, обладающих простым для освоения процессом использования и интуитивно-понятным интерфейсом.м удваиваться ежегодно в период 2015-2018 гг. и достигнет более 2,3 млн шт.²¹


Динамика выручки и капитализация игроков на рынке 3D-печати и оборудования²¹

		Капитализация, сент. 2015		Выручка, \$млн				Динамика, %		
Компания	Страна	2015	май 2017	2013	2014	2015	2016	2014/ 2013	2015/ 2014	2016/ 2015
1. Stratasys	США	\$1,5 млрд								
2. 3D Systems	США	\$1,4 млрд								
3. ProtoLabs	США	\$1,81 млрд								
4. Materialise	Бельгия	\$400 млн								
5. ExOne	США	\$107 млн								
6. Arcam	Швеция	\$311 млн								
7. SLM Solutions	Германия	\$278 млн								
8. Alphaform	Германия	\$1,6 млн								
9. Voxeljet	Германия	\$106,3 млн								
10. Organovo	США	\$312,4 млн								

Источники: отчетность компаний

По оценке исследовательской компании ...

В региональном представлении рынки США, Японии и Германии остаются лидерами по числу отгрузок профессиональных 3D-принтеров²².

4. ТЕНДЕНЦИИ РЫНКА И ПРИМЕРЫ ПРИМЕНЕНИЯ 3D-ПЕЧАТИ

В апреле 2017 **Leroy Merlin** в партнерстве с Techshop организовала во Франции проект **FabLab**. FabLab — это пространство, в котором собраны 3D-принтеры, автоматизированные швейные машины и другое оборудование, доступное клиентам. Задача проекта — дать возможность людям попробовать персонализированное производство, где человек сам является дизайнером и проектировщиком⁴².

В декабре 2016 запущен пилотный проект в 1 гипермаркете **Walmart** в партнерстве с **Intersect** в Канаде. В преддверии 2017 года компания организовала акцию-услугу: покупатель мог напечатать на 3D-принтере рождественские украшения собственного дизайна всего за \$10. Целевой аудиторией проекта были выбраны мамы-миллениалы. Компания хотела создать клиентам прогрессивный и персонализированный опыт создания подарков^{43,44}. Проект также считался пилотным, потому что Walmart хотел понять, где можно внедрить технологию в свою бизнес-модель.

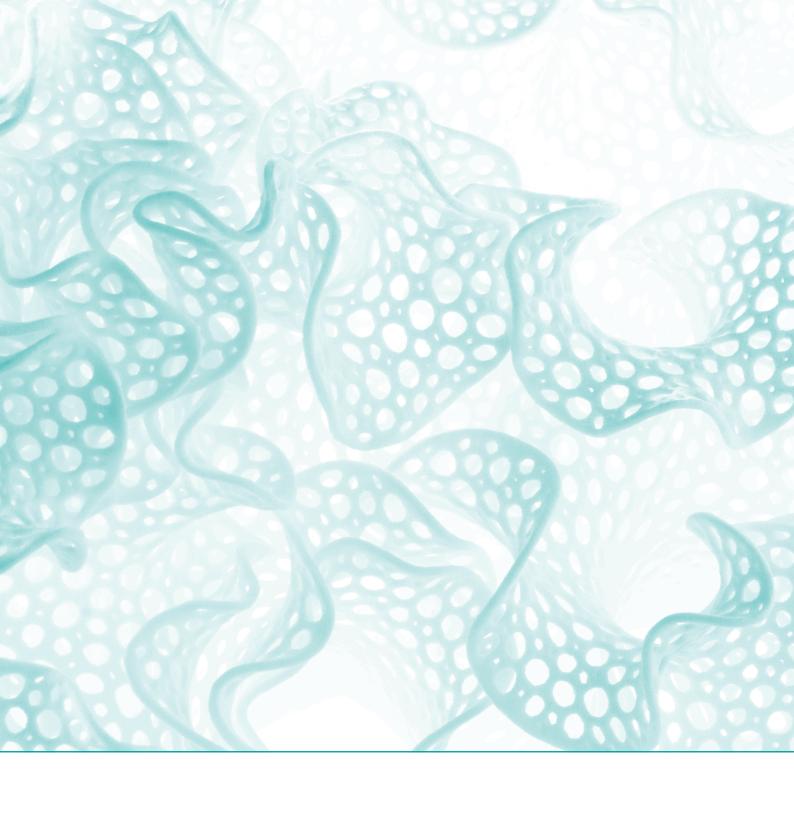
Mattel, американский производитель игрушек, ведет разработку 3D-принтера для детей **ThingMaker**, который планирует выпустить на рынок осенью 2017 года. 3D-принтер позволит детям самостоятельно печатать игрушки: динозавов, кукол, роботов. Принтер работает совместно с приложением с простым интерфейсом, в котором можно проектировать игрушки. Печать одной игрушки будет занимать от 30 минут до 6-8 часов в зависимости от размера и сложности. Стоимость принтера \$300⁴⁵.

3. **Изменение цепочки поставок и локализация производства**: производство теперь может находиться максимально близко к потребителю и быстро настраиваться под изменение запроса потребителя. Также снизится необходимость в содержании товарного запаса запасных и расходных частей.

ного печатать еду. Предполагается печать изделий из шоколада, шоколадной пасты и продуктов подобной консистенции.

4.4. РОСТ ИНВЕСТИЦИЙ ГЛОБАЛЬНЫХ ОПРОШЕННЫХ ПРОИЗВОДИТЕЛЕЙ 2015-2017 Г.

Alcoa инвестировала \$60 млн в создание центра исследований с целью сделать 3D-печать жизнеспособной в промышленном масштабе для производства деталей в аэрокосмической, автомобильной и строительной отраслях⁵¹.


Michelin и **Fives** – инвестиция \$25 млн в совместные разработки оборудования для 3D-печати металлических изделий⁵².

General Electric приобрела компании **Arcam** и **Concept Laser GmbH**. Сумма сделки составила \$1,5 млрд. Технологии и опыт Arcam и Concept Laser направлены на интеграцию 3D-печати для самолетов. В планах GE инвестировать еще около \$100 млн в расширение производства. Цель General Electric — заработать \$1 млрд на технологиях 3D-печати к 2020 г.⁵³

В июле 2017 новое подразделение **GE Additive** специализирующееся на разработке и производстве 3D-принтеров и материалов для них выпустило крупнейший в мире лазерный 3D-принтер **Atlas**, который печатает детали из металлического порошка. Устройство будет осуществлять 3D-печать конструктивных элементов реактивных двигателей и деталей для самолетов и будет применяться в автомобильной, энергетической и нефтегазовой отраслях. По оценке GE внедрение новой разработки позволит экономить \$2-3 млн на производстве одного самолета.

GE Aviation в 2016-17 активно применяет аддитивное производство для создания топливных форсунрок для семейства двигателей LEAP самолетов Airbus, Boeing и COMAC новых поколений. Компания также разрабатывает Advanced Turboprop — первый в истории коммерческий авиационный двигатель, многие компоненты которого изготовлены с использованием трехмерной печати.

5. ПОРТРЕТЫ КЛЮЧЕВЫХ ИГРОКОВ, ОКАЗЫВАЮЩИХ СЕГОДНЯ НАИБОЛЬШЕЕ ВЛИЯНИЕ НА ОТРАСЛЬ

реди основных игроков рынка 3D-печати выделяются **6 типов компаний:**

	Тип игрока	Примеры игроков
1.	Производители программного обеспечения (ПО) для 3D-моделирования, (в т.ч. и ПО для узкоспециализированных отраслей, например, для создания ювелирных украшений)	Autodesk, SolidView, Catia
2.	Производители 3D-принтеров (создание устройств, ПО и инфраструктуры)	3D Systems, Stratasys,Z Corporation, Picaso3D
3.	Компании, предоставляющие online-услуги 3D-печати и 3D-моделирования	Kraftwurx Shapeways
4.	Онлайн и офлайн магазины 3D-оборудования (принтеры, сканеры, расходные материалы и т.д.)	SIU Systems Cyberon Group, 3Dvision, Top 3D shop), 3D-Rep
5.	Специализированные облачные сервисы, позволяющие разместить заказ онлайн и выбрать наиболее подходящего игрока из доступных (по логистике, по характеру заказу и т.д.)	3D Hubs
6.	Отр <mark>асле</mark> вые лидеры диверсифицированные в предоставление услуг по 3D-печати	Staples, UPS

5.1. КЛЮЧЕВЫЕ ИГРОКИ РЫНКА

3DSystems – ведущий поставщик решений в области трехмерной печати: 3D-принтеров, расходных материалов и услуг по изготовлению нестандартных деталей, творческих материалов, дизайнерских инструментов для специалистов и потребителей.

Главный офис – г. Рок-Хилл, Южная Карол<mark>ин</mark>а, США

География деятельности: Северная и Южная Америки, Азиатско-Тихоокеанский регион, Европа, Ближний Восток.

Доля выручки компании в США в 2014 г.: 50,9% (55,5% в 2013 и в 2014 гг.).

Ценности: инновации, качество, операционное совершенство и партнерское дружелюбие

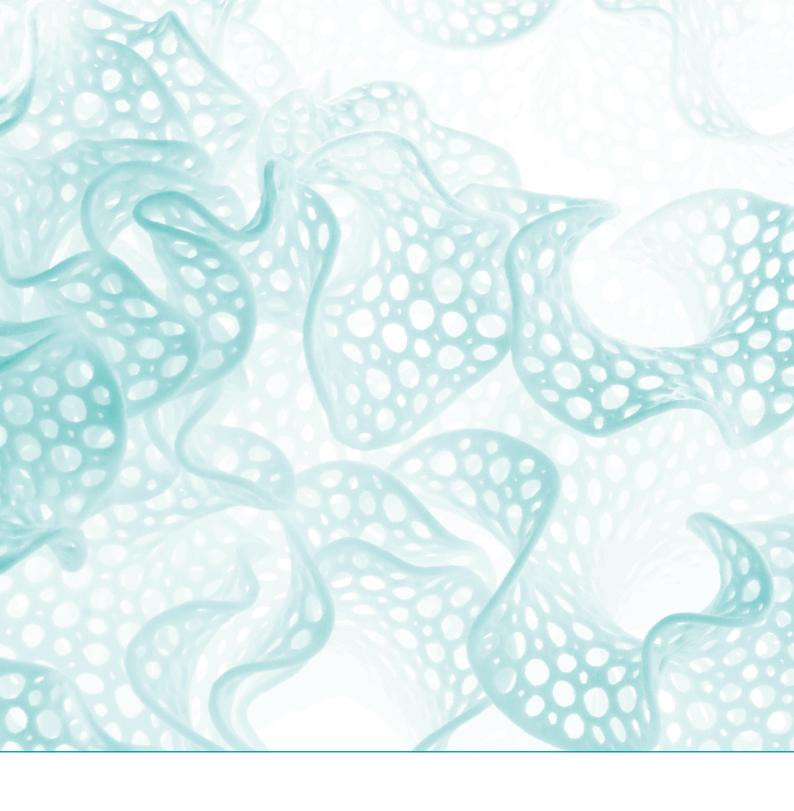
Стратегические инициативы:

- Сосредоточить ресурсы и возможности компании в ключевых областях **промышлен- ность, здравоохранение, машиностроение, образование**
- Увеличить объем ежегодных расходов на исследовательские работы на 75-100% к 2017 г.
- Продолжить слияния и поглощения для расширения бизнеса компании
- Улучшить качество производимой продукции и снизить число производственных ошибок
- Упростить процедуру обслуживания клиентов и сократить время отклика группы технической поддержки

Финансовые показатели компании

	2010	2011	2012	2013	2014	2015	2016
Выручка, \$тыс.							
Динамика выручки, %							
Затраты на R&D, \$ тыс.							
Чистая прибыль, \$ тыс.							
Динамика чистой прибыли, %							
Рентабельность, %							
Число сотрудников, чел.							
Выручк <mark>а</mark> на 1 <mark>сот</mark> руд <mark>ник</mark> а, \$ тыс.							

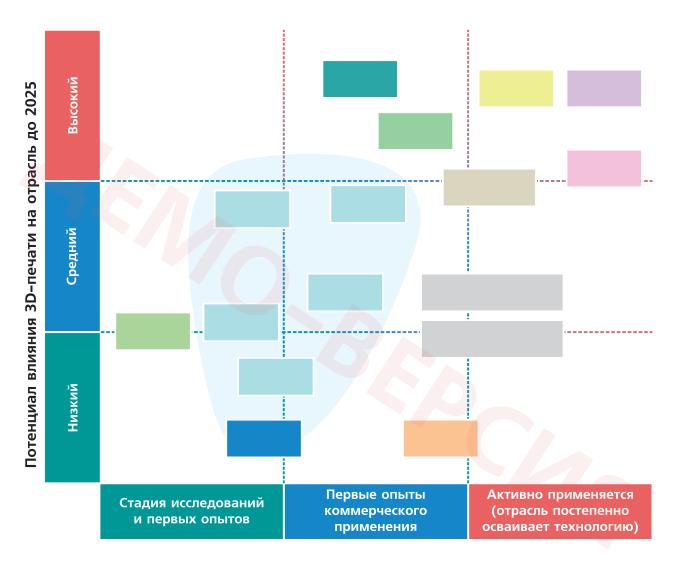
Акции 3DSystems ...



5.2. РОЛЬ ВЛИЯНИЯ КРАУДФА<mark>НДИНГО</mark>ВЫХ ПЛОЩАДОК В ФИНАНСИРОВАНИИ ПРОЕКТОВ ПО РАЗРАБОТКЕ 3D-ПРИНТЕРОВ. АНАЛИЗ НАИБОЛЕЕ УСПЕШНЫХ СТАРТАП ПРОЕКТОВ

Краудфандинговые платформы стали жизненно важными инструментами для стартапов и предпринимателей, желающих воплотить в жизнь уникальные идеи. Нами рассмотрены проекты по 3D-принтерам на площадках **Kickstarter** и **Indiegogo**. Прежде чем подробно рассмотреть самые успешные кампании, определим, чем данные площадки отличаются друг от друга.

Кісkstarter и Indiegogo работают **по принципу вознаграждения** — люди выделяют деньги и что-то за это получают (как правило, экземпляр товара). Данные платформы работают как эксклюзивные интернет-магазины — здесь можно сделать предзаказ на товары, которых больше нигде нет. Запуск кампаний на обеих площадках подразумевает разные стратегии и уровень подготовки проекта, разный набор инструментов для достижения цели.


Kickstarter действует по схеме **«все или ничего»**, т.е. финансирование только тех проектов, которые набрали заявленную сумму, или же возврат денег залогодателям в случае недостижения цели в срок. Модель **IndieGoGo – «все остается»**, т.е. проект получает все собранные средства независимо от того, была ли набрана заявленная сумма в срок.

6. ПРИМЕНЕНИЕ ТЕХНОЛОГИИ 3D-ПЕЧАТИ И СКАНИРОВАНИЯ В РАЗЛИЧНЫХ ОТРАСЛЯХ ЭКОНОМИКИ

Самыми активными потребителями 3D-печати остаются производственные компании, использующие технологию для создания прототипов, создания форм для литья и мелкосерийного производства отдельных деталей. Потенциал влияния 3D-печати мы рассмотрим в матрице где по горизонтали статус развития применения 3D печати в конкретной отрасли и по вертикале - потенциал влияния 3D-технологий на конкретную компанию.

Оценка потенциала использования 3D-печати

Эффекты от внедрения технологий 3D-печати игроками из различных отраслей не ограничиваются экономической эффективностью. Представители компаний констатируют переход на новый уровень разработки и проектирования и проводят аналогии с появлением интернета или электронной почты в жизни их компании.

Для использования технологий 3D-печати производственные и сервисные компании могут выбрать следующие варианты:

6.1. ПРИМЕНЕНИЕ 3D-ПЕЧАТИ В ПРОИЗВОДСТВЕ И ПРОМЫШЛЕННОМ ДИЗАЙНЕ: ДЛЯ СОЗДАНИЯ ПРОТОТИПОВ И МАКЕТОВ БУДУЩИХ ПРОДУКТОВ И ИЗДЕЛИЙ

Разработка новой продукции предполагает создание прототипов будущих изделий. С помощью функционального прототипа можно с большей вероятностью обнаружить ошибки в конструкции и разработать максимально возможное число вариантов дизайна. Разработка наибольшего числа прототипов позволяет упростить процесс разработки и помогает снизить издержки, которые могут быть вызваны недоработками конструкции (на прототипах также отрабатываются технологические схемы и кинематика моделей). Получение прототипов традиционными методами (механическая обработка, литье) требует от нескольких недель до месяца и является сложным, и дорогостоящим этапом.

Традиционные технологии Использование 3D-печати 1. Создание прототипов на станках с ЧПУ из различ-В отличие от станка с ЧПУ, 3D-принтер не отсеканых материалов. Трехмерная модель загружается ет лишнее из заготовки, а сразу создает нужный на компьютер, который управляет фрезеровальконтур – это дает экономию материала. ным станком (часто компании использует аутсорсинг разработки прототипа – компания пользуется 2. Создание композитных прототипов из разных услугами внешних подрядчиков). типов материалов за один подход (некоторые модели 3D-принтеров) – исключается задача 2. Создание макетов вручную из нужных материалов по подгонке, стыковке, скреплению разных частей по лекалам и чертежам. прототипа из разных материалов. 3. Ручной труд исключается – все, что требуется от оператора – заправить принтер нужными расходники и создать/загрузить 3D-модель. 4. Исключается процесс передачи разработки прототипа на аутсорсинге.

Эффект от использования 3D-печати:

- 1. Сокращение времени изготовления прототипа
- 2. Сокращение стоимости прототипа
- 3. Создание композитных прототипов из разных типов материалов за один подход
- 4. Дизайнеры получают больше возможностей для тестирования творческих и инженерных решений
- 5. Экономия материалов
- 6. Сохранение конфиденциальной информации по коммерческим разработкам внутри компании (аутсорсинг 3D-печати)
- 7. Снижение объемов документооборота с подрядчиками (аутсорсинг 3D-печати)
- 8. Исключение логистического звена (аутсорсинг 3D-печати)

6.1.1. ЦИФРОВАЯ ЭЛЕКТРОНИКА

В **Microsoft** во время разработки приставки Xbox One было создано 75 различных 3D-печатных прототипов корпуса, 100 3D-прототипов кинетики и более 200 3D-печатных геймпадов. Все это – для поиска решения, максимально удовлетворяющего запросам потребителей⁷³.

Процесс проектирования и создания приставки занял 2 года.

Самым важным и трудоемким этапом было создание контроллера (геймпада): **компания потратила \$100 млн на создание контроллера для Xbox One**: «Мы протестировали более чем 1000 пар контроллеров». На конец июня 2015 г. продано 14,3 млн приставок Xbox One⁷⁴.

Fujikon специализируется на производстве наушников и портативных акустических систем для смартфонов. В 2011 R&D команда Fujikon проанализировала инновационные технологии для разработки продуктов. 3D-печать была признана наиболее перспективным инструментом. 18 месяцев команда тестировала несколько 3D-принтеров на качество работы софта и производственной части, качество материала и готового продукта.

Технология ДО	Техн <mark>ология ПОСЛЕ</mark>
Обработка заготовок на станках с ЧПУ	PROJET®7000 от к <mark>ом</mark> пании 3D <mark>Sys</mark> tems с техно-
	логией стереолитогр <mark>афии (SLA). Создает</mark> модели
	до 380x380x250 мм с точностью до 0,0 <mark>25</mark> -0,05 мм
	при очень высокой с <mark>корости печ</mark> ати

Эффекты:

- 1. Создание полного прототипа продукта из виртуальной 3D-модели занимает 1 ночь, на следующий день начинается тестирование продукта
- 2. Сокращение рабочего времени команды минимум 5%
- 3. Экономия на стоимости материалов 11%
- 4. Скорость создания комплектующих увеличилась на 62%

New Balance Athletic Shoe Inc., производит обувь для спортсменов на заказ, используя 3D-печать. Обувь основана на индивидуальной биомеханике бегуна.

Основана в 1908 году.

Штаб-квартира: США

- Мировые продажи более \$2 млрд.
- Более 4000 сотрудников.
- Инновации на всех уровнях бизнеса, постоянное изучение передовых методов проектирования и производства продукции.
- Использование 3d-печати для кастомизации продукта.

Технология ДО	Технология ПОСЛЕ
Массовый производство моделей. На основе замеров нескольких бегунов	Использование SLS- технологии (нейлоновый порошок) от EOSINT P 395 с учетом всех анатомических особенностей

Эффект от внедрения: снижение веса обуви на 5%.

6.1.3. АВТОМОБИЛЬНОЕ ПРОИЗВОДСТВО

Дизайнеры **Bentley** прорабатывают практически каждую деталь автомобиля от кузова до салона в заданном масштабе с помощью 3D-принтера⁷⁶.

Технология ДО	Технология ПОСЛЕ		
Станки с ЧПУ	3D-принтеры Objet 30 Pro (в настольном исполнении)		
	и Objet 500 Connex от компании Stratasys.		

Эффект от внедрения:

- 1. Точность 3D-принтера Objet30 позволяет получить уменьшенную в десять раз копию реальной детали, оценить и протестировать ее и определить перечень доработок.
- 2. Получив одобрение в малом масштабе, инженеры создают на принтере Objet500 Connex модели, уменьшенные в три раза, полноразмерные модели, а также детали, состоящие из разных материалов, не испытывая необходимости в сборке. В одном прототипе могут сочетаться мягкие и твердые, прозрачные и непрозрачные материалы, при этом такие прототипы не требуют сборки.

Ford использует 3D-принтеры для создания **прототипов деталей мотора**: головки цилиндров, впускных и выпускных коллекторов⁷⁷.

Технология ДО	Технология ПОСЛЕ			
Станки с ЧПУ	3D-Objet Eden 350V от компании Stratasys			

Эффект от внедрения:

- 1. **Сокращение времени** изготовления прототипа **в 30 раз** с 4-х месяцев до 4-х дней.
- 2. Сокращение стоимости изготовления прототипа в 150 раз с \$500 тыс. до \$3 тыс.

6.1.4. ТОВАРЫ ДЛЯ СПОРТА

Компания **Thermos**, производство емкостей и контейнеров для сохранения продуктов питания и напитков холодными или горячими. Тренд роста продукции «То Go» (еда на ходу) привел к «революции» в вариантах объемов и характеристик термосов⁷⁸. В 2014 г. продано более 3 млн кружек-термосов Thermos.

Технология ДО	Технология ПОСЛЕ		
Изготовление прототипов на аут-	Texнологии PolyJet и ObjetConnex260 от компании		
сорсинге			
	Stratasys		

Эффект от внедрения:

- 1. **Сокращение времени** создания прототипа **в 100 раз** с 3-5дней до нескольких часов.
- 2. Сокращение стоимости создания прототипа в 5 раз.

- 3. 3D-печать помогает компании делать **лучшие продукты:** «Мы можем сделать так много прототипов, сколько надо, чтобы достигнуть наших целей проектирования. Без каких-то компромиссов. Это позволило нам оптимизировать посадку крышки-пробки и удобство заправки самых продаваемых кружек Thermos».
- 4. Технологии PolyJet 3D и Connex позволяют дизайнерам создавать подробные гладкие модели из нескольких материалов без дополнительных технологических процессов «за один проход».

Компания **Trek**, производитель велосипедов, имеет множество наград за дизайн и инновации⁷⁹. **Когда ежегодные расходы Trek на сервисные бюро по созданию прототипов достигли \$275 тыс., компания приобрела** систему 3D-печати **Objet Connex500**. Выбор сделан исходя из способности печатать детали и узлы, изготовленные из разных материалов для моделирования, с разными механическими или физическими свойствами в рамках одной конструкции. Смешение материалов для увеличения твердости конструкции стало ключевым фактором.

3D-принтер использ<mark>уется для каждого велосипеда, выпускаемого Trek. При создании флагманской модели Speed Concept 9 — велосипеда для заезда на скорость — прототип каждой детали нового дизайна был напечатан на Objet Connex и затем отправлен из штаб-квартиры Trek в Висконсине на стенд в Калифорнии для испытаний в аэродинамической трубе.</mark>

Технология ДО	Технология ПОСЛЕ
Опытные образцы деталей из алюминия или плотной пены обрабатывались на станках с ЧПУ внутри	Objet Connex500 от компании Stratasys
компании и комбинировались с SLA-деталями, изготавливаемыми на аvтсорсинге	

Эффект от внедрения:

- 1. **Сокращение времени** создания прототипа **в 100+ раз** с нескольких дней или недель до 30 минут.
- 2. Возможность быстро напечатать несколько вариантов побудил дизайнеров больше экс-периментировать 75 % опытных образцов создаются для компонентов, для которых их раньше никогда не делали.

- 3. **Сокращение количества ошибок** при обработке, из-за которых срок выпуска продукта мог сдвигаться на несколько недель или месяцев.
- 4. Качество и отделка деталей, получаемых на Objet Connex, аналогично SLA-деталям, ранее изготавливаемым в сервисных бюро на аутсорсинге.

6.1.5. АРХИТЕКТУРНЫЙ ДИЗАЙН

Rietveld Architects

Компания **Rietveld Architects**, Нью-Йорк, строит масштабные, креативные коммерческие и жилые здания⁸⁰.

Благодаря возможностям печати прототипов компания смогла получить ряд новых проектов. Клиенты положительно отреагировали на появление этой технологии, поскольку новые модели теперь создаются и обрабатываются одним сотрудником за считанные часы.

Технология ДО	Технология ПОСЛЕ		
Модели создавались вручную из картона,	3D-принтер Objet Eden350 от Stratasys		
пенопласта и оргстекла			

Эффект от внедрения:

- 1. **Сокращение трудозатрат** макеты создавались вручную двумя сотрудниками в течение двух месяцев. Для создания модели методом 3D-печати достаточно 1 человека и нескольких часов работы.
- 2. **Точности создания деталей** уровня 3D-принтера невозможно добиться, создавая модели вручную.

3. Система 3D-печати производит впечатление на клиента. Если в процессе работы над проектом клиент требует внести изменения в дизайн или сомневается в том, как эти изменения по-влияют на общий внешний вид, компания вносит изменения в модель и распечатывает за несколько часов.

6.5. ПРИМЕНЕНИЕ 3D-ПЕЧАТИ В МЕДИЦИНЕ

По данным исследовательской компании Grand View Research, объем мирового рынка 3D-печати в медицине достигнет \$1,23 млрд к 2020 г. (средний ежегодный рост 2014-2020 составит 15,6%)¹⁰³. Аддитивные технологии уже активно используют в протезировании и стоматологии, так как трехмерная печать позволяет получить протезы и коронки в 3-4 раза быстрее классической технологии создания слепков и ручного изготовления моделей. Активно идет тестирование 3D-печати в создании максимально подходящих по размерам имплантатов и протезов (части черепа, межпозвоночные диски, суставы). 3D-печать позволяет воссоздать точную копию человеческого скелета и отдельных органов, помогая врачам провести тренировку и максимально точно отработать приемы перед операцией (медицинские трехмерные модели

могут быть изготовлены из целого ряда материалов, включая живые органические клетки).

США: распечатанное на 3D-принтере бионическое ухо, которое содержит чувствительную к радиоволнам антенну и живые клетки (разработка ученых из Пристонского Университета)¹⁰⁴

Великобритания: лицевой протез, созданный на 3D-принтере, помог пациенту Эрику Моджеру создать максимально точный протез, скрывающий последствия удаления опухоли в челюстно-лицевом отделе. (протез выполнен Dawood & Tanner Dental Practice) 105

Россия: WEAS robotics (разработчик робототехнических платформ) и Can Touch с помощью 3D-принтера создали первый в РФ механический протез кисти руки. Стоимость протеза руки для ребенка до 10 лет может быть в районе 5-6 тыс. руб. 106

6.5.1. ...

6.5.3. ПРИМЕНЕНИЕ В ОРТОПЕДИИ

Standard Cyborg – стартап по разработке и производству протезов для рук и ног. Осуществляет печать протезов на 3D-принтере. Имеется собственное приложение для iPad (взаимодействующее со специальным сканером и ПО), которое позволяет удалённо осуществлять замеры и индивидуализировать протез.

Ключевой продукт – водонепроницаемый протез для ног.

Первые инвестиции – декабрь 2014 г. Резидент YCombinator (Сан-Франциско). Основатели: Jeff Huber (разработчик ПО) и Garrett Spiegel (инженер медицинского оборудования)¹¹¹.

Продукция:

- Культеприёмные гильзы и полноценные протезы для рук и ног с различными видами повреждений.
- Ортезы (средства восстановления после травм и операций) для стоп, осанки.

В качестве материала используется углеродное волокно высокого качества для обеспечения прочности и безопасности изделий.

Система производства:

- Сканирование конечности через приложение в iTunes, которое отправляет результаты автоматически на Structure Scanner и Design Studio (облачное ПО для дальнейшей обработки скана).
- В получившуюся 3D-модель протеза можно вносить изменения.
- Производство: 3D-печать либо самостоятельно, либо через компанию.

Обещают 3D-печать культеприемной гильзы менее, чем за 2 дня.

Цена: \$500.

7. 3D-СКАНИРОВАНИЕ

3 D-сканер – устройство, анализирующее физический объект и на основе полученных данных создающее его 3D-модель. 3D-сканер позволяет создать трехмерное изображение любого объекта и проанализировать цифровую информацию о его геометрии, цвете и других параметрах. После 3D-сканирования в цифровую модель можно вносить любые необходимые корректировки.

Основная **цель** 3D-сканирования — создание карты точек поверхности объекта. Последующий процесс реконструкции (экстраполяции) точек позволяет цифровым образом воссоздать формы объекта. Если в процессе сканирования были получены не только координаты точки, но также данные о цвете, то это позволяет воссоздать текстуру поверхности. Кроме того, необходима привязка изображений к единой системе координат. Таким образом, в результате применения этих методов создается полноценная трехмерная модель сканируемого объекта.

Появление современной технологии 3D-сканирования приходится на вторую половину 20 века. Первый 3D-сканер был создан в 1960 г. Тогда технология столкнулась с невозможностью обработки и хранения полученной информации, что ограничивало сферы применения. Развитие технологий позволило создавать и обрабатывать 3D-модели, а 3D-печать увеличила ценность 3D-сканирования, позволив воссоздать отсканированные модели.

3D-сканер – это небольшое электронное устройство, ручное (весом до 2 кг) или стационарное, использующее в качестве подсветки лазер или лампу вспышку. Точность получаемых моделей объектов варьируется от десятков до сотен микрометров. Возможно сканирование с передачей цвета или только формы поверхности.

Основные характеристики 3D-сканеров:

- **Точность** характеристика соответствия размеров полученной 3D-модели размерам физического объекта сканирования.
- **Разрешение** размер минимального полигона (расстояния между точками) в полученной модели. То есть дискретизация, с которой оцифровывается объект.
- По **методу сканирования** процесс может быть контактным (контактирует с объектом) и бесконтактным, который в свою очередь разделяется на активное и пассивное сканирование.

Метод	Преимущества	Недостатки
Бесконтактные	•	•
оптические сканеры		

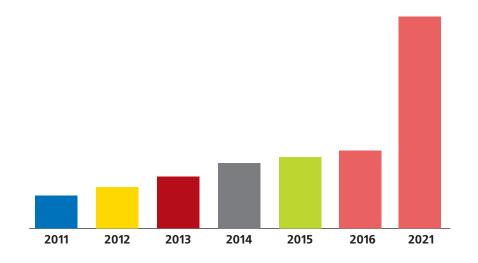
7.1. ПРИМЕРЫ ПРИМЕНЕНИЯ 3D-САНИРОВАНИЯ

7.1.1. ПРОМЫШЛЕННОЕ ПРОИЗВОДСТВО

Британская компания **Thames Water** создает цифровые модели водопроводных труб для водоснабжения и водоотведения, для оценки состояния труб и планирования профилактических работ^{113,114}.

Nika Holding – производитель автомобильных аксессуаров на заказ – создаёт цифровые 3D-модели днищ автомобилей для изготовления индивидуальных ковриков (реверс-инжиниринг)¹¹⁵.

Голландская компания **Marinebedrijf Koninklijke Marine** осуществляет техническое обслуживание всех военно-морского флота Нидерландов и фрегатов класса «М» бельгийского флота. Компания также занимается изготовлением запчастей для этих судов и модификацией всех деталей, начиная от корпуса корабля до системы вооружения и двигателей. Использует 3D-сканеры для получения 3D-моделей запчастей, требующих ремонта или замены. Затем используют сканы в процессе реверс-инжиниринга. Далее деталь изготавливают посредством технологии 3D-печати.


. . .

..

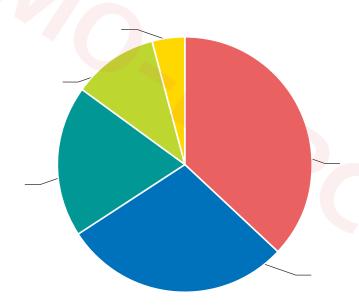
7.2. ОБЪЁМ РЫНКА 3D-СКАНИРОВАНИЯ

Объем мирового рынка 3D-сканеров (мир), \$млрд

Источники: Wohlers, Grand View Research, оценка ГК Институт Тренинга - АРБ Про

$$_{2011-16}^{CAGR} = 12,7\%$$

$$_{2016-21}^{CAGR} = 16,4\%$$


Динамика выручки и капитализация игроков на рынке 3D-сканирования

Компания	Страна	Капитализа- ция: сент. 2015	Выручка в 2014, \$млн.	Выручка в 2015, \$млн.	Выручка в 2016, \$млн.	Динамика 2015/14	Динамика 2016/15
Hexagon AB	Швеция						
Faro Technologies	США						
Trimble Navigation Ltd.	США						
Topcon Corporation	Япония						
3D Digital Corporation	США						
Perceptron Inc.	США						

Источники: отчётность компаний

Структура мирового рынка 3D-сканирования по регионам, 2015 г.

Источник: Grand View Research

Мировые лидеры отрасли 3D-сканирования

• Пластическая хирургия.

1. ...

7.3.2. FASHION-ИНДУСТРИЯ

Сканер выполнен в виде примерочной комнаты и установлен в модном магазине New Look в лондонском ТЦ Westfield Stratford

Задача: мгновенно подобрать клиенту наиболее точно под-ходящие ему по размеру вещи из ассортимента.

Преимущества использования:

- 1. Существенное сокращение времени проведения антропометрических измерений.
- 2. Возможность накопления статистических данных для дальнейшей разработки структуры ассортимента для различных целевых групп.
- 3. Сокращение времени создания реальных прототипов одежды на 20%.

7.3.3. ПРОИЗВОДСТВО

Производство стало первой отраслью, внедрившей трёхмерное сканирование в повседневную работу. Практически в каждой отрасли промышленности на самых технологически оснащенных предприятиях используются 3D-сканеры. Учёт применения устройств в этой отрасли крайне сложен, т.к. каждое предприятие ищет новые способы применения данной технологии.

Применение:

- Сохранение прототипов изделия.
- Возможность массового производства уникальных, сделанных вручную изделий.

gom

Год основания: 1990 Сотрудники: 400+

Контакты:

ЦО: Брауншвейг, Германия http://www.gom.com/index.html Филиалы: Бенилюкс и Левен (Бельгия), Цюрих (Швейцария), Париж (Франция), Ковентри (Великобритания) и др.

GOM gmbH – производитель оптического измерительного оборудования, одна из ведущих европейских компаний по версии «3D Today», деятельность которой посвящена, в том числе, разработке и производству 3D-сканирующих систем.

Специализация:

3D-сканирование, автоматизированная оптическая метрология, 3D координатное измерение, контроль качества, 3D-контроль, 3D анализ движения, тестинг материалов и моделей, 3D программное обеспечение и 3D-метрология

О компании:

Рисследовании компаний, которые смогли построить бизнес на компетенциях в 3D-печати, ГК «Институт Тренинга – АРБ Про» выбрала **5 игроков с контрастными бизнес-идеями**. Ключевой критерий отбора – концентрация на работе с одним ключевым рыночным сегментом или аудиторией (из выборки исключены компании, предоставляющие онлайн- и офлайн-сервисы по 3D-печати без специализации на конкретном продукте).

Sandboxr (Солт Лэйк Сити, Юта, США)

Идея: печать героев и моделей из популярных виртуальных игр.

Веб-сайт: http://sandboxr.com/

Рыночный потенциал: По данным Newzoo Data Explorer, в США, Китае, Ю. Корее и РФ возраст 70-80% игроков мобильных приложений – работающие люди старше 21 года¹³³.

Решение: компания предлагает фанатам и любителям компьютерных игр создать фигуру любимого игрового персонажа с возможностью персонификации в онлайн-редакторе (браузер, мобильное приложение): выбрать позу, цвет, форму, нанести надпись и т.п.

Происхождение идеи: увлечение основателя компании играми и игровыми персонажами.

Устройство для печати: 3D-принтеры с полноцветным набором материала от компании 3D Systems – Advanced Technology ColorJet серии ProJet x60.

История компании:

1 февраля 2013 — Sandboxr представила на американском рынке ПО для 3D-печати. Уникальность приложения позволяет конечному пользователю варьировать множество настроек 3-х мерной фигуры: выражение лица, движения, оружие и т.п.

Апрель 2013 — кампания на платформе Kickstarter завершилась, финансовая цель не достигнута — собрано \$23 тыс. из требуемых \$125 тыс.

Август 2014 — соглашение с ChAIR Entertainment о создании коллекций героев игры Infinity Blade.

Июль 2015 — в партнерстве с компаниями 3D Systems и Amazon запущена площадка для покупателей Amazon. Покупатели могут создать, отправить на печать и заказать доставку фигурки любимого героя. Доступны персонажи из 35 наиболее популярных игр. Стоимость фигурки зависит от размера: от \$29,99 до \$89,99.

Август 2016 — был приобретен компанией **whiteclouds**, которая разрабатывает персонализированные софт, технологии, готовые решение и аппаратное обеспечение в области 3D-printing (причиной покупки стало желание оставаться лидером в области решений для индустрии развлечений и стремление к диверсификации, а причиной продажи — желание объединить технологии)¹³⁴.

- ...

- .
- •
- •
- •
- •

Food Ink. – стартап – первый ресторан, подающий 3D-еду.

Основан в 2016 г.

Центральный офис: Лондон, Великобритания

Контакты: http://foodink.io/

Основатель:

Antony Dobrzensky – доктор юриспруденции, окончил Queen's University. Основатель двух инвестиционных фондов RybnaCosmo (инвестиции в недвижимость в Чехии, закрыт в 2017 г.) и 3DFP ventures, основная цель которая инвестиции в производство 3D-принтеров.

Решение:

С помощью 3D-принтеров byFlow (http://3dbyflow.com/) основатель компании начал подавать в ресторанах первую в мире еду, сделанную на 3D-принтерах. Развитие компании началось с демонстрации нового вида кухни в одном из ресторанов Нидерландов. Успех

WhiteCLouds – стартап – облачная платформа для 3D, позволяющая создавать персонализированные продукты для компаний.

Основан в 2013 г. Центральный офис: Огден, Юта.

Контакты: https://www.whiteclouds.com

Основатель:

Jerry Ropelato. CEO и основатель компании, имеющий 30-летний опыт работы в производственной и Интернет медиа сферах, а также опыт развития технологичных продуктов. До ос-

214